raid5

Recovering from a dead disk in a Linux software-RAID5 system using mdadm

RAID5 failure

As I wrote quite a while ago, I set up a RAID5 with three
IDE disks at home, which I'm using as backup (yes, I know that
RAID != backup) and storage space.

A few days ago, the RAID was put to a real-life test for the first time, as one of the disks died. Here's what that looks like in dmesg:

raid5: raid level 5 set md1 active with 3 out of 3 devices, algorithm 2
RAID5 conf printout:
 --- rd:3 wd:3
 disk 0, o:1, dev:hda2
 disk 1, o:1, dev:hdg2
 disk 2, o:1, dev:hde2
[...]
hdg: dma_timer_expiry: dma status == 0x21
hdg: DMA timeout error
hdg: 4 bytes in FIFO
hdg: dma timeout error: status=0x50 { DriveReady SeekComplete }
ide: failed opcode was: unknown
hdg: dma_timer_expiry: dma status == 0x21
hdg: DMA timeout error
hdg: 252 bytes in FIFO
hdg: dma timeout error: status=0x50 { DriveReady SeekComplete }
ide: failed opcode was: unknown
hdg: dma_timer_expiry: dma status == 0x21
hdg: DMA timeout error
hdg: 252 bytes in FIFO
hdg: dma timeout error: status=0x58 { DriveReady SeekComplete DataRequest }
ide: failed opcode was: unknown
hdg: DMA disabled
ide3: reset: success
hdg: dma_timer_expiry: dma status == 0x21
hdg: DMA timeout error
hdg: 252 bytes in FIFO
hdg: dma timeout error: status=0x58 { DriveReady SeekComplete DataRequest }
ide: failed opcode was: unknown
hdg: DMA disabled
ide3: reset: success
hdg: status timeout: status=0x80 { Busy }
ide: failed opcode was: 0xea
hdg: drive not ready for command
hdg: lost interrupt
hdg: task_out_intr: status=0x50 { DriveReady SeekComplete }
ide: failed opcode was: unknown
hdg: lost interrupt
hdg: task_out_intr: status=0x50 { DriveReady SeekComplete }
ide: failed opcode was: unknown

That's when I realized that something was horribly wrong.

Not long after that, these messages appeared in dmesg. As you can see the software-RAID automatically realized that a drive died and removed the faulty disk from the array. I did not lose any data, and the system did not freeze up; I could continue working as if nothing happened (as it should be).

 md: super_written gets error=-5, uptodate=0
 raid5: Disk failure on hdg2, disabling device.
 raid5: Operation continuing on 2 devices.
 RAID5 conf printout:
  --- rd:3 wd:2
  disk 0, o:1, dev:hda2
  disk 1, o:0, dev:hdg2
  disk 2, o:1, dev:hde2
 RAID5 conf printout:
  --- rd:3 wd:2
  disk 0, o:1, dev:hda2
  disk 2, o:1, dev:hde2

This is how you can check the current RAID status:

 $ cat /proc/mdstat
 Personalities : [raid6] [raid5] [raid4] 
 md1 : active raid5 hda2[0] hde2[2] hdg2[3](F)
       584107136 blocks level 5, 64k chunk, algorithm 2 [3/2] [U_U]

The "U_U" means two of the disks are OK, and one is faulty/removed. The desired state is "UUU", which means all three disks are OK.

The next steps are to replace the dead drive with a new one, but first you should know exactly which disk you need to remove (in my case: hda, hde, or hdg). If you remove the wrong one, you're screwed. The RAID will be dead and all your data will be lost (RAID5 can survive only one dead disk at a time).

The safest way (IMHO) to know which disk to remove is to write down the serial number of the disk, e.g. using smartctl, and then check the back side of each disk for the matching serial number.

 $ smartctl -i /dev/hda | grep Serial
 $ smartctl -i /dev/hde | grep Serial
 $ smartctl -i /dev/hdg | grep Serial

(ideally you should get the serial numbers before one of the disks dies)

Now power down the PC and remove the correct drive. Get a new drive which is at least as big as the one you removed. As this is software-RAID you have quite a lot of flexibility; the new drive doesn't have to be from the same vendor / series, it doesn't even have to be of the same type (e.g. I got a SATA disk instead of another IDE one).

Insert the drive into some other PC in order to partition it correctly (e.g. using fdisk or cfdisk). In my case I needed a 1 GB /boot partition for GRUB, and the rest of the drive is another partition of the type "Linux RAID auto", which the software-RAID will then recognize.

Then, put the drive into the RAID PC and power it up. After a successful boot (remember, 2 out of 3 disks in RAID5 are sufficient for a working system) you'll have to hook-up the new drive into the RAID:

 $ mdadm --manage /dev/md1 --add /dev/sda2
 mdadm: added /dev/sda2

My new SATA drive ended up being /dev/sda2, which I added using mdadm. The RAID immediately starts restoring/resyncing all data on that drive, which may take a while (2-3 hours, depends on the RAID size and some other factors). You can check the current progress with:

 $ cat /proc/mdstat 
 Personalities : [raid6] [raid5] [raid4] 
 md1 : active raid5 sda2[3] hda2[0] hde2[2]
       584107136 blocks level 5, 64k chunk, algorithm 2 [3/2] [U_U]
       [>....................]  recovery =  0.1% (473692/292053568) finish=92.3min speed=52632K/sec

As soon as this process is finished you'll see this in dmesg:

 md: md1: recovery done.
 RAID5 conf printout:
  --- rd:3 wd:3
  disk 0, o:1, dev:hda2
  disk 1, o:1, dev:sda2
  disk 2, o:1, dev:hde2

In /proc/mdstat you'll see "UUU" again, which means your RAID is fully functional and redundant (with three disks) again. Yay.

 $ cat /proc/mdstat
 Personalities : [raid6] [raid5] [raid4] 
 md1 : active raid5 sda2[1] hda2[0] hde2[2]
       584107136 blocks level 5, 64k chunk, algorithm 2 [3/3] [UUU]

Btw, another nice utility you might find useful is hddtemp, which can check the temperature of the drives. You should take care that they don't get too hot, especially so if the RAID runs 24/7.

 $ hddtemp /dev/hda
 dev/hda: SAMSUNG HD300LD: 38 °C
 $ hddtemp /dev/hde
 dev/hde: SAMSUNG HD300LD: 44 °C
 $ hddtemp /dev/sda
 dev/sda: SAMSUNG HD322HJ: 32 °C

RAID5 + dm-crypt + LVM + ext3 Debian install and benchmarks

OK, so I've setup a RAID5 at home because I'm getting tired of failed disk drives and data losses.

Some notes:

  • The system consists of 3 x 300 GB IDE drives in software RAID5 (standard Linux kernel and mdadm), thus ca. 600 GB usable storage space.
  • I've used the stock Debian installer to set up all of this, no custom hacks or anything needed.
  • Each drive is on an extra IDE bus/controller (1x onboard/internal, 2x on an PCI IDE controller card), as broken IDE disks (lacking hot-swap capabilities) often take down the whole IDE bus with them; it's not a good idea to put two disks on one IDE bus.
  • The software stack is: RAID5 at the botton, dm-crypt on top of that to encrypt the whole RAID, LVM on top of that to partition the system into /, /usr, /var, /tmp, /home, and swap.
  • /boot is on an extra 1 GB partition (replicated on each drive) as GRUB doesn't work on RAIDed disks and I want to use GRUB, not LILO. GRUB is also installed on the MBR of each drive, so if one of them fails, the other two can still come up.
  • I installed and configured smartmontools to check the status of the drives, and hddtemp to check their temperature.
  • Stability tests so far: While the system is running, pull out one of the IDE drives (yes, they're not hot-swappable and that may not be such a good idea, usually). The system survived without data loss. Time for rebuilding the array: ca. 1 hour. Second test: while the system is running, pull the plug. The system survived that, too.

Some stats from bonnie++ if anybody cares:

Version  1.03       ------Sequential Output------ --Sequential Input- --Random-
                    -Per Chr- --Block-- -Rewrite- -Per Chr- --Block-- --Seeks--
Machine        Size K/sec %CP K/sec %CP K/sec %CP K/sec %CP K/sec %CP  /sec %CP
bonsai           2G 26727  72 39426  19 16690   7 28725  65 34164   7 215.3   0
                    ------Sequential Create------ --------Random Create--------
                    -Create-- --Read--- -Delete-- -Create-- --Read--- -Delete--
              files  /sec %CP  /sec %CP  /sec %CP  /sec %CP  /sec %CP  /sec %CP
                 16 +++++ +++ +++++ +++ +++++ +++ +++++ +++ +++++ +++ +++++ +++
bonsai,2G,26727,72,39426,19,16690,7,28725,65,34164,7,215.3,0,16,+++++,+++,+++++,+++,+++++,+++,+++++,+++,+++++,+++,+++++,+++

(Now, if I only knew what all those figures mean ;-)

No, neither the software RAID5, nor the dm-crypt layer nor LVM cause any measurable performance degradation whatsoever (from my subjective feeling). I don't care enough to measure anything. The CPU is idling all the time.

Power consumption is rather high (partly due to the mainboard and CPU, but also because of the disks + fans) and the system is pretty loud, which both sucks on the long run. I plan an ultra-silent, ultra-low-power RAID5 with 2.5" disks attached via USB to a (silent, low-power) NSLU2 for later.

Syndicate content